Durante miles de millones de años, los microorganismos y las plantas desarrollaron el notable proceso que conocemos como fotosíntesis.
por Max Planck Society
La fotosíntesis convierte la energía solar en energía química, proporcionando así toda la vida en la Tierra con alimentos y oxígeno. Los compartimentos celulares que albergan las máquinas moleculares, los cloroplastos, son probablemente los motores naturales más importantes en la tierra. Muchos científicos consideran que reconstruir y controlar artificialmente el proceso fotosintético es el «proyecto Apolo de nuestro tiempo». Significaría la capacidad de producir energía limpia: combustible limpio, compuestos de carbono limpios como antibióticos y otros productos simplemente a partir de luz y dióxido de carbono.
Pero, ¿cómo construir una célula viva y fotosintética desde cero? La clave para imitar los procesos de una célula viva es lograr que sus componentes trabajen juntos en el momento y lugar correctos. En la Sociedad Max Planck, este ambicioso objetivo se persigue en una iniciativa interdisciplinaria de múltiples laboratorios, la red MaxSynBio. Ahora, el equipo de investigación de Marburg, dirigido por el director Tobias Erb, ha creado con éxito una plataforma para la construcción automatizada de compartimentos fotosintéticamente activos del tamaño de una celda, «cloroplastos artificiales», que pueden capturar y convertir el dióxido de carbono del gas de efecto invernadero con luz.
La microfluídica se une a la biología sintética
Los investigadores de Max Planck utilizaron dos desarrollos tecnológicos recientes: la primera biología sintética para el diseño y la construcción de nuevos sistemas biológicos, como las redes de reacción para la captura y conversión de dióxido de carbono, y la segunda microfluídica, para el ensamblaje de materiales blandos, como como gotas del tamaño de una celda.
«Primero necesitábamos un módulo de energía que nos permitiera potenciar las reacciones químicas de manera sostenible. En la fotosíntesis, las membranas de cloroplasto proporcionan la energía para la fijación del dióxido de carbono, y planeamos explotar esta capacidad», explica Tobias Erb.

El aparato de fotosíntesis aislado de la planta de espinacas demostró ser lo suficientemente robusto como para ser utilizado para impulsar reacciones únicas y redes de reacción más complejas con luz. Para la reacción oscura, los investigadores utilizaron su propio módulo metabólico artificial, el ciclo CETCH. Consiste en 18 biocatalizadores que convierten el dióxido de carbono de manera más eficiente que el metabolismo del carbono que ocurre naturalmente en las plantas. Después de varias rondas de optimización, el equipo tuvo éxito en la fijación de luz controlada del gas de efecto invernadero CO 2 in vitro.
El segundo desafío fue el ensamblaje del sistema dentro de un compartimento definido en una microescala. Con vistas a futuras aplicaciones, también debería ser fácil automatizar la producción. En cooperación con el laboratorio de Jean-Christophe Baret en el Centre de Recherché Paul Pascal (CRPP) en Francia, los investigadores desarrollaron una plataforma para encapsular las membranas semisintéticas en gotitas similares a células.
Más eficiente que la fotosíntesis de la naturaleza.
La plataforma microfluídica resultante es capaz de producir miles de gotas estandarizadas que pueden equiparse individualmente de acuerdo con las capacidades metabólicas deseadas. «Podemos producir miles de gotas equipadas de forma idéntica o podemos dar propiedades específicas a las gotas individuales», dijo Tarryn Miller, autor principal del estudio. «Estos pueden ser controlados en el tiempo y el espacio por la luz».
A diferencia de la ingeniería genética tradicional en organismos vivos, el enfoque ascendente ofrece ventajas decisivas: se enfoca en un diseño mínimo y no está necesariamente limitado a los límites de la biología natural. «La plataforma nos permite realizar soluciones novedosas que la naturaleza no ha explorado durante la evolución», explica Tobias Erb. En su opinión, los resultados tienen un gran potencial para el futuro. En su publicación en la revista Science, los autores pudieron demostrar que equipar el «cloroplasto artificial» con las nuevas enzimas y reacciones dio como resultado una tasa de unión para el dióxido de carbono que es 100 veces más rápida que los enfoques biológicos sintéticos anteriores. «A largo plazo, los sistemas similares a la vida podrían aplicarse a prácticamente todas las áreas tecnológicas, incluidas la ciencia de los materiales, la biotecnología y la medicina. Solo estamos al comienzo de este emocionante desarrollo». Además, los resultados son otro paso hacia la superación de uno de los mayores desafíos del futuro: las concentraciones cada vez mayores de dióxido de carbono atmosférico .

- Un nuevo análisis identifica 13.000 genes presentes en todas las gramíneasUn nuevo proceso de biología computacional ha mapeado más de 13.000 grupos de genes codificadores de proteínas conservados en gramíneas, lo que ofrece una herramienta poderosa para los investigadores que…
- Un enfoque de genética avanzada revela el factor responsable del intercambio de carbono en las hojasLas plantas almacenan carbono en dos formas principales: almidón y triglicéridos (TAG). El almidón se almacena principalmente en los cloroplastos de las hojas, donde sirve como fuente de energía fácilmente…
- El estudio del genoma de las aves ofrece información sobre la evolución de las enfermedades pandémicasLa evolución es el motor de la naturaleza, que impulsa y configura el cambio genético y la diversidad que nos rodea. Charles Darwin, famoso por su teoría de la selección…
- Avanzando despacio pero con paso firme hacia la regulación de la edición genética en plantas en EuropaLa semana pasada, los representantes de los 27 Estados miembros de la Unión Europea avalaron la propuesta del Consejo Europeo sobre la proposición legislativa para regular las nuevas técnicas genómicas…
- Tecnología de tijeras de edición genética optimizada para el mejoramiento de plantas mediante bioingenieríaDurante la última década, la tecnología CRISPR-Cas9 ha ganado un amplio reconocimiento como una influencia innovadora en el campo de la edición del genoma. Ella sirvió como catalizador de una…
- Descubren el mecanismo genético que regula el paso de la adolescencia a la adultez en insectosLa investigación, liderada por el Instituto de Biología Evolutiva, revela en la mosca Drosophila que la activación del gen E93 marca el inicio de la fase adulta y suprime los genes juveniles,…