La caña de azúcar que se cultiva hoy en día es un híbrido de dos especies: Saccharum officinarum, la caña de azúcar original domesticada en la India hace 3.000 años, y S. spontaneum.
El genoma de la caña de azúcar que se completó hace unos meses contiene 10 mil millones de pares de bases en 100-130 cromosomas, tres veces el tamaño del genoma humano.
El genoma de la caña de azúcar se ha convertido en un gigante que ha empujado a un equipo brasileño de la Universidad de Campinas (IB-UNICAMP) a desarrollar un software que permita reconstruir genomas complejos como el de este cultivo. El equipo ha desarrollado PGA (Polyploid Gene Assembler), un sistema que se centra en pequeñas porciones del genoma que corresponden a aproximadamente el 1%-2%, exactamente donde se encuentran los genes de interés.
Los investigadores identificaron un total de 39,234 genes, 60.4% de los cuales se agruparon en familias conocidas de genes de gramíneas. Este sistema sería mucho menos costoso que el actual y requeriría menos tiempo. Está diseñado para mapear partes específicas de los genomas de las plantas poliploides.
Según Marcelo Falsarella Carazzolle, coordinador de bioinformática en el Laboratorio de Genómica y Bioenergía del Instituto de Biología de la IB-UNICAMP, “hemos detectado por primera vez las bases moleculares de ciertas características significativas de S. spontaneum, como la alta productividad y la resistencia al estrés biótico y abiótico. Estos resultados se pueden usar en futuros estudios funcionales y genéticos.”
Más información en la Agência FAPESP.

- La desmetilación del ADN explica cómo los tomates convierten sus toxinas amargas en algo más agradable al paladarUn equipo multiinstitucional de bioingenieros ha identificado el mecanismo genético que convierte las toxinas amargas en compuestos agradables al paladar en los tomates. por Bob Yirka, Phys.org En su estudio , publicado…
- El arroz editado genéticamente puede producir un compuesto vital para la salud humanaUn equipo de científicos chinos ha utilizado la edición genética dirigida para desarrollar arroz que produce coenzima Q10 (CoQ 10 ), un compuesto vital para la salud humana.por Zhang Nannan, Academia China de…
- El ensamblaje casi completo del genoma del trigo de primavera chino abre la puerta al futuro mejoramiento del trigo.En un nuevo estudio publicado en Molecular Plant , investigadores dirigidos por Fu Xiangdong y Lu Fei del Instituto de Genética y Biología del Desarrollo (IGDB) de la Academia China de Ciencias, en colaboración…
- Edición genómica sin transgenes en álamos: un paso hacia la silvicultura sostenibleCientíficos del Centro de Biología de Sistemas Vegetales VIB-UGent y del Colegio Universitario VIVES han desarrollado un nuevo método para mejorar genéticamente los álamos sin introducir ADN extraño en su…
- Los péptidos antimicrobianos de la espinaca se muestran prometedores contra las enfermedades de los cultivos de cítricos y patatasLos científicos de Texas A&M AgriLife Research han desarrollado un nuevo enfoque para contrarrestar el enverdecimiento de los cítricos y la enfermedad de la papa cebra, dos enfermedades agrícolas económicamente…
- ¿Moras sin espinas? Un científico ensambla el genoma de una mora, un paso importante para obtener mejores frutos.Moras sin espinas, resistentes a enfermedades y más sabrosas podrían estar en el horizonte gracias a una nueva investigación genética de la Universidad de Florida.por Brad Buck, Universidad de FloridaLas nuevas…