Un equipo de investigadores de España, Alemania y Francia ha identificado el interruptor genético ENO (número excesivo de órganos florales) como un regulador de la fruta del tomate.
por Bob Yirka, Phys.org
En su artículo publicado en Proceedings of the National Academy of Sciences , el grupo describe su uso de secuenciación de genes y técnicas de edición que les permitieron identificar el cambio de genes que está involucrado en la determinación del tamaño de la fruta.
Investigaciones anteriores han demostrado que el tomate doméstico moderno es considerablemente más grande que sus ancestros nativos, quizás 100 veces más grande. El tomate fue domesticado por primera vez hace aproximadamente 10.000 años en América del Sur y se ha convertido en un alimento básico en la dieta humana en todo el mundo. En este nuevo esfuerzo, los investigadores buscaron aprender más sobre los cambios que ha sufrido el tomate para permitirle crecer a un tamaño tan grande.
Los investigadores comenzaron con el conocimiento de que el tamaño de la fruta en los tomates está determinado por la cantidad de carpelos en una flor, lo que conduce a la cantidad de compartimientos de semillas que crecen para convertirse en parte de la fruta. Investigaciones previas también han demostrado que las acciones de las mutaciones fasciadas y del número de lóbulos explican el desarrollo de cultivares que tienen más de ocho lóculos. Para aprender más sobre otros factores genéticos que han llevado a una fruta más grande, los investigadores secuenciaron el genoma del tomate y también utilizaron la edición CRISPR-Cas9 para aislar una proteína involucrada en el crecimiento de ENO (un factor de transcripción que se une a secuencias de ADN específicas) . Eso les permitió ver que ENO es un regulador de frutas que puede hacer su trabajo regulando WUSCHEL (una vía de señalización) expresión génica que resulta en restringir la producción de células madre de una manera específica de la flor. También encontraron que se seleccionó una mutación en el promotor ENO durante el largo proceso de domesticación, lo que resultó en un tamaño de fruta más grande. Más específicamente, descubrieron que las mutaciones en ENO resultaron en la creación de más cavidades que albergan semillas.
Los investigadores sugieren su identificación de un interruptor genético como regulador del tamaño de la fruta y sus mutaciones probablemente explican cómo el tomate aumentó de tamaño durante la domesticación.

cerasiforme (B); variedades domesticadas de S. lycopersicum (CF); lc mutante (D); lc y fasmutante (E); eno mutante (F). Crédito: Fernando J. Yuste-Lisbona, Sandra Bretones y Rafael Lozano


- Un estudio genómico mapea casi 60 millones de años de evolución y diversidad del género de la manzanaUna nueva comparación y análisis de los genomas de las especies del género Malus, que incluye la manzana domesticada y sus parientes silvestres, reveló las relaciones evolutivas entre las especies…
- Cultivos transgénicos: ¿malos o buenos?Los criadores explican por qué Ghana necesita caupí modificado genéticamente. El caupí transgénico con resistencia a la polilla del frijol, una plaga dañina, reduce la necesidad de insecticidas en un…
- Descifran el genoma de la patata europea: los investigadores encuentran un pequeño acervo genético con grandes diferenciasLa papa es un alimento básico para más de 1300 millones de personas. Sin embargo, a pesar de su importancia para la seguridad alimentaria mundial, los éxitos en el mejoramiento…
- Los investigadores logran un avance importante al descubrir el poder de la variación epigenética en el mejoramiento de cultivosLa variación epigenética, al igual que la variación genética, puede heredarse e influir en los rasgos a lo largo de las generaciones. Sin embargo, la variación epigenética no implica cambios…
- Científicos descubren un nuevo mecanismo inmunológico de la quinasa tándem del trigoLos investigadores han descubierto un nuevo mecanismo inmunológico mediante el cual las quinasas tándem combaten la invasión de patógenos: una proteína NLR atípica, WTN1 (Wheat Tandem NBD 1), se asocia…
- Crean “armadura” con proteínas artificiales que protege a la yuca de ataque bacteriano