¿Qué pasaría si pudiéramos cultivar plantas que son más grandes y también tienen un mayor contenido nutricional? Los científicos de la Universidad Estatal de Michigan (Estados Unidos) han identificado un gen que podría ser un obstáculo importante para el desarrollo de plantas altas en nutrientes como proteínas y aminoácidos.
Universidad Estatal de Michigan.- Las proteínas realizan la mayoría, si no todas, las funciones de la vida: promover el crecimiento, reparar el tejido corporal o desarrollar músculo. Si las proteínas son como las palabras, los aminoácidos son las letras. Nuestros cuerpos usan alrededor de 20 aminoácidos, en varias combinaciones o deletreos, para producir diferentes proteínas.
Nuestros cuerpos producen algunos aminoácidos, pero hay nueve aminoácidos esenciales que nosotros y otros animales no podemos producir. Los obtenemos a través de alimentos, como carnes, lácteos y, en última instancia, plantas.
Durante décadas, los científicos han estado tratando de aumentar el contenido de aminoácidos en los cultivos aumentando sus sistemas de producción, pero siempre se encuentran con el mismo problema: los cultivos se enferman. Los científicos están confundidos sobre por qué las plantas sufren la abundancia de estos aminoácidos.
El nuevo estudio sugiere que el objetivo de la proteína rapamicina, o TOR, es un obstáculo importante. El estudio fue publicado en eLife.
“La proteína TOR es un regulador maestro del metabolismo en las células vegetales”, dijo Pengfei Cao, postdoctoral en el laboratorio de Federica Brandizzi. “Detecta variables, como la disponibilidad de nutrientes, los niveles de energía, las señales de crecimiento, etc. La proteína TOR utiliza esta información para controlar el crecimiento celular y las funciones del metabolismo”.
Cuando TOR detecta una cantidad adecuada de nutrientes, promueve el crecimiento. Hay un giro; TOR es tan poderoso en el control de muchos procesos biosintéticos y estructuras celulares, que puede causar problemas si no se regula bien.
Resulta que TOR evalúa la disponibilidad de nutrientes a través de un tamaño de muestra de tres aminoácidos. Si le das a la planta muchos de estos, TOR asume que los nutrientes son abundantes y pasa al modo de sobremarcha. La realidad es que la disponibilidad de nutrientes podría no ser adecuada.
Tal TOR sobre-ractivo, podría cambiar la estructura de la célula, en detrimento de la salud de una planta.
Otra de las funciones de TOR es jugar con pequeños filamentos celulares, llamados actina.
“Los filamentos de actina forman el ‘esqueleto’ de la célula vegetal que sostiene el sistema de endomembranas de la célula. Este último construye varios de los bloques de construcción de la célula”, dijo Cao. “Estos filamentos también ayudan a determinar la forma de la célula y encontramos que un TOR demasiado activo conducirá a una mayor producción de proteínas y un mayor tamaño de la célula”.
“Pero las formas de las células son anormales. Por ejemplo, las células de la raíz no logran formar completamente los pelos de la raíz para que puedan absorber el agua”, dijo Cao.
En otras palabras, el resultado es una planta infeliz que se desarrolla a un ritmo más lento.
“Cuando los científicos han tratado de aumentar la producción de aminoácidos en los cultivos, el problema no es que haya demasiados aminoácidos”, dijo Cao. “Tal vez estos cultivos se enferman debido a los efectos secundarios en las pequeñas estructuras dentro de sus células. Una vez que descubramos algunas dinámicas importantes que causan que las plantas se enfermen, podríamos volver a intentar formas de sobreproducir aminoácidos de una manera equilibrada y saludable”.
Cao cree que la naturaleza interdisciplinaria del trabajo permitió el avance.
“Trabajamos con estructuras de células vegetales”, dijo Cao. “Nuestros colaboradores de Last Lab estudian las vías bioquímicas. Si hubiéramos trabajado en este proyecto por separado, no tendríamos la experiencia para examinar dónde surgen los defectos”.
- Fuente: https://msutoday.msu.edu/news/2019/identifying-a-plant-cell-barrier-to-breeding-more-nutritious-crops/
- Estudio: https://elifesciences.org/articles/50747
- La secuenciación del genoma de las cuatro especies de macadamia abre un nuevo potencial para la mejora de los cultivosUn equipo de investigación ha secuenciado y ensamblado con éxito los genomas de las cuatro especies de macadamia, lo que marca un avance significativo en los esfuerzos de mejora de…
- Investigadores exploran los impactos ambientales de los cultivos modificados genéticamenteLos cultivos genéticamente modificados (GM) se utilizan ampliamente en todo el mundo, pero es necesario comprender mejor sus efectos sobre el medio ambiente. por la Universidad de Toronto Una investigación reciente, publicada en Science el…
- Un científico holandés utilizó un nuevo método de edición genética con extremos pegajosos para crear súper variedades de patatas.El enfoque innovador tiene como objetivo crear variedades de patatas resistentes a enfermedades, y luego otros cultivos, mediante una innovadora tecnología de edición del genoma para reducir el uso de…
- Los científicos descubren cómo interactúan los hongos del tizón del arroz con los microbios del sueloEn el mundo de la agricultura, el arroz es un alimento básico para más de la mitad de la población mundial, por lo que su cultivo es crucial para la…
- Estados Unidos da «luz verde» a una arveja genéticamente modificada que produce una proteína de la carne de vacunoMoolec Science ha recibido la primera aprobación de los reguladores del USDA en Estados Unidos, para arvejas modificadas genéticamente que contienen proteína de carne de vacuno rica en hierro, producida…
- Algunos ajustes genéticos pueden hacer que la avena sea más nutritiva y aumente su vida útilA través de modificación genética, investigadores de la Universidad McGill lograron aumentar el contenido de ácido oléico de la avena, un tipo de grasa saludable, que además aumenta la vida…